Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.956
1.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734816

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Interleukin-18 , Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Macrophages/metabolism , Macrophages/immunology , Interleukin-1beta/metabolism , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Caspase 1/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , Severity of Illness Index , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Young Adult , Apoptosis Regulatory Proteins/metabolism , Antigens, CD/metabolism , NLR Proteins/metabolism , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , CD68 Molecule , DNA-Binding Proteins
2.
Adv Exp Med Biol ; 1447: 37-44, 2024.
Article En | MEDLINE | ID: mdl-38724782

Atopic dermatitis, commonly known as eczema, is a chronic inflammatory dermatosis that can affect individuals from infancy to adulthood. Also referred to as "the itch that rashes," atopic dermatitis is classically associated with significant pruritus that is accompanied by characteristic cutaneous and other clinical findings. The diagnosis of atopic dermatitis can be challenging due to the wide range of clinical presentations based on patient factors such as age, skin type, ethnicity, and other comorbid conditions. This chapter reviews the classical findings as well as the less common manifestations of atopic dermatitis.


Dermatitis, Atopic , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/pathology , Humans , Pruritus/etiology , Pruritus/diagnosis , Skin/pathology , Infant
3.
PLoS One ; 19(5): e0302781, 2024.
Article En | MEDLINE | ID: mdl-38713650

Atopic dermatitis is a multi-pathogenic disease characterized by chronic skin inflammation and barrier dysfunction. Therefore, improving the skin's ability to form an epidermal barrier and suppressing the production of cytokines that induce type 2 inflammatory responses are important for controlling atopic dermatitis symptoms. (-)-Blebbistatin, a non-muscle myosin II inhibitor, has been suggested to improve pulmonary endothelial barrier function and control inflammation by suppressing immune cell migration; however, its efficacy in atopic dermatitis is unknown. In this study, we investigated whether (S)-(-)-blebbistatin O-benzoate, a derivative of (-)-blebbistatin, improves dermatitis symptoms in a mite antigen-induced atopic dermatitis model using NC/Nga mice. The efficacy of the compound was confirmed using dermatitis scores, ear thickness measurements, serum IgE levels, histological analysis of lesions, and filaggrin expression analysis, which is important for barrier function. (S)-(-)-Blebbistatin O-benzoate treatment significantly reduced the dermatitis score and serum IgE levels compared to those in the vehicle group (p < 0.05). Furthermore, the histological analysis revealed enhanced filaggrin production and a decreased number of mast cells (p < 0.05), indicating that (S)-(-)-blebbistatin O-benzoate improved atopic dermatitis symptoms in a pathological model. In vitro analysis using cultured keratinocytes revealed increased expression of filaggrin, loricrin, involucrin, and ceramide production pathway-related genes, suggesting that (S)-(-)-blebbistatin O-benzoate promotes epidermal barrier formation. Furthermore, the effect of (S)-(-)-blebbistatin O-benzoate on type 2 alarmin cytokines, which are secreted from epidermal cells upon scratching or allergen stimulation and are involved in the pathogenesis of atopic dermatitis, was evaluated using antigens derived from mite feces. The results showed that (S)-(-)-blebbistatin O-benzoate inhibited the upregulation of these cytokines. Based on the above, (S)-(-)-blebbistatin O-benzoate has the potential to be developed as an atopic dermatitis treatment option that controls dermatitis symptoms by suppressing inflammation and improving barrier function by acting on multiple aspects of the pathogenesis of atopic dermatitis.


Cytokines , Dermatitis, Atopic , Epidermis , Filaggrin Proteins , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/metabolism , Mice , Cytokines/metabolism , Epidermis/drug effects , Epidermis/metabolism , Epidermis/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Keratinocytes/drug effects , Keratinocytes/metabolism , Humans , Intermediate Filament Proteins/metabolism , Intermediate Filament Proteins/genetics , Disease Models, Animal , Antigens, Dermatophagoides/immunology , Immunoglobulin E/blood , Male , Benzoates/pharmacology
4.
J Dermatolog Treat ; 35(1): 2351489, 2024 Dec.
Article En | MEDLINE | ID: mdl-38724042

BACKGROUND: Genital involvement in atopic dermatitis(AD) can have a significant impact on the patient's quality of life. However, inspection of genital areas is not usually conducted during routine examination and patients may be reluctant to inform the clinician or show this area. OBJECTIVE: to evaluate the efficacy of tralokinumab in AD patients with genital involvement. METHODS: Adult patients with moderate/severe AD and genital involvement receiving tralokinumab have been analyzed. Primary endpoints were EASI, DLQI, PP-NRS, genital-IGA (g-IGA) and genital itching (GI) at week 16. RESULTS: out of 48 patients with moderate/severe AD under treatment with tralokinumab, 12 patients (25%) showed a genital involvement. Seven patients reported itching in the genital area (58%), while none reported a positive history of genital infections. Median scores at T0 were EASI 17.5, PP-NRS 8 and DLQI 14. After 16 weeks of treatment, we observed a median EASI of 3, a median PP-NRS of 1 and a median DLQI of 1. Finally, concerning the genital response, after 16 weeks of treatment, we observed a statistically significant decrease in mean GI and g-IGA scores. CONCLUSION: despite the small size of our sample, tralokinumab can be considered as a valid treatment option for AD with genital involvement.


Antibodies, Monoclonal , Dermatitis, Atopic , Severity of Illness Index , Humans , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Male , Female , Adult , Antibodies, Monoclonal/therapeutic use , Middle Aged , Treatment Outcome , Pruritus/drug therapy , Pruritus/etiology , Quality of Life , Young Adult , Genital Diseases, Female/drug therapy , Genital Diseases, Male/drug therapy
5.
Cells ; 13(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38607026

The transmembrane glycoprotein OX40 receptor (OX40) and its ligand, OX40L, are instrumental modulators of the adaptive immune response in humans. OX40 functions as a costimulatory molecule that promotes T cell activation, differentiation, and survival through ligation with OX40L. T cells play an integral role in the pathogenesis of several inflammatory skin conditions, including atopic dermatitis (AD). In particular, T helper 2 (TH2) cells strongly contribute to AD pathogenesis via the production of cytokines associated with type 2 inflammation (e.g., IL-4, IL-5, IL-13, and IL-31) that lead to skin barrier dysfunction and pruritus. The OX40-OX40L interaction also promotes the activation and proliferation of other T helper cell populations (e.g., TH1, TH22, and TH17), and AD patients have demonstrated higher levels of OX40 expression on peripheral blood mononuclear cells than healthy controls. As such, the OX40-OX40L pathway is a potential target for AD treatment. Novel therapies targeting the OX40 pathway are currently in development, several of which have demonstrated promising safety and efficacy results in patients with moderate-to-severe AD. Herein, we review the function of OX40 and the OX40-OX40L signaling pathway, their role in AD pathogenesis, and emerging therapies targeting OX40-OX40L that may offer insights into the future of AD management.


Dermatitis, Atopic , Humans , Cell Differentiation , Cytokines/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Inflammation , Leukocytes, Mononuclear/metabolism
6.
J Invest Dermatol ; 144(5): 989-1000.e1, 2024 May.
Article En | MEDLINE | ID: mdl-38643989

A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.


Dermatitis, Atopic , Keratinocytes , Dermatitis, Atopic/therapy , Dermatitis, Atopic/pathology , Humans , Keratinocytes/pathology , Permeability , Epidermis/pathology , Epidermis/metabolism , Skin/pathology , Skin/metabolism , Animals , Cell Differentiation
7.
Nat Commun ; 15(1): 2839, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565563

Dupilumab, an IL4R-blocking antibody, has shown clinical efficacy for atopic dermatitis (AD) treatment. In addition to conjunctivitis/blepharitis, the de novo appearance of head/neck dermatitis is now recognized as a distinct side effect, occurring in up to 10% of patients. Histopathological features distinct from AD suggest a drug effect, but exact underlying mechanisms remain unknown. We profiled punch biopsies from dupilumab-associated head and neck dermatitis (DAHND) by using single-cell RNA sequencing and compared data with untreated AD and healthy control skin. We show that dupilumab treatment was accompanied by normalization of IL-4/IL-13 downstream activity markers such as CCL13, CCL17, CCL18 and CCL26. By contrast, we found strong increases in type 22-associated markers (IL22, AHR) especially in oligoclonally expanded T cells, accompanied by enhanced keratinocyte activation and IL-22 receptor upregulation. Taken together, we demonstrate that dupilumab effectively dampens conventional type 2 inflammation in DAHND lesions, with concomitant hyperactivation of IL22-associated responses.


Antibodies, Monoclonal , Dermatitis, Atopic , Humans , Antibodies, Monoclonal/therapeutic use , T-Lymphocytes/pathology , Antibodies, Monoclonal, Humanized/adverse effects , Dermatitis, Atopic/pathology , Interleukin-13 , Treatment Outcome , Severity of Illness Index
8.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38673730

Atopic dermatitis (AD), a chronic inflammatory skin disease, is exacerbated by obesity, yet the precise linking mechanism remains elusive. This study aimed to elucidate how obesity amplifies AD symptoms. We studied skin samples from three mouse groups: sham control, AD, and high-fat (HF) + AD. The HF + AD mice exhibited more severe AD symptoms than the AD or sham control mice. Skin lipidome analysis revealed noteworthy changes in arachidonic acid (AA) metabolism, including increased expression of pla2g4, a key enzyme in AA generation. Genes for phospholipid transport (Scarb1) and acyltransferase utilizing AA as the acyl donor (Agpat3) were upregulated in HF + AD skin. Associations were observed between AA-containing phospholipids and skin lipids containing AA and its metabolites. Furthermore, imbalanced phospholipid metabolism was identified in the HF + AD mice, marked by excessive activation of the AA and phosphatidic acid (PA)-mediated pathway. This imbalance featured increased expression of Plcb1, Plcg1, and Dgk involved in PA generation, along with a decrease in genes converting PA into diglycerol (DG) and CDP-DG (Lpin1 and cds1). This investigation revealed imbalanced phospholipid metabolism in the skin of HF + AD mice, contributing to the heightened inflammatory response observed in HF + AD, shedding light on potential mechanisms linking obesity to the exacerbation of AD symptoms.


Dermatitis, Atopic , Diet, High-Fat , Disease Models, Animal , Obesity , Animals , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/etiology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Obesity/metabolism , Obesity/genetics , Obesity/complications , Mice , Diet, High-Fat/adverse effects , Skin/metabolism , Skin/pathology , Lipid Metabolism/genetics , Mice, Inbred C57BL , Arachidonic Acid/metabolism , Lipidomics/methods , Male , Phospholipids/metabolism
9.
JCI Insight ; 9(9)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38564302

Loss-of-function (LoF) variants in the filaggrin (FLG) gene are the strongest known genetic risk factor for atopic dermatitis (AD), but the impact of these variants on AD outcomes is poorly understood. We comprehensively identified genetic variants through targeted region sequencing of FLG in children participating in the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children cohort. Twenty FLG LoF variants were identified, including 1 novel variant and 9 variants not previously associated with AD. FLG LoF variants were found in the cohort. Among these children, the presence of 1 or more FLG LoF variants was associated with moderate/severe AD compared with those with mild AD. Children with FLG LoF variants had a higher SCORing for Atopic Dermatitis (SCORAD) and higher likelihood of food allergy within the first 2.5 years of life. LoF variants were associated with higher transepidermal water loss (TEWL) in both lesional and nonlesional skin. Collectively, our study identifies established and potentially novel AD-associated FLG LoF variants and associates FLG LoF variants with higher TEWL in lesional and nonlesional skin.


Dermatitis, Atopic , Filaggrin Proteins , Intermediate Filament Proteins , Loss of Function Mutation , Phenotype , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Humans , Male , Female , Child, Preschool , Prospective Studies , Infant , Intermediate Filament Proteins/genetics , Genetic Predisposition to Disease , Child , Food Hypersensitivity/genetics
10.
Sci Rep ; 14(1): 6776, 2024 03 21.
Article En | MEDLINE | ID: mdl-38514712

Given the intricate etiology and pathogenesis of atopic dermatitis (AD), the complete cure of AD remains challenging. This study aimed to investigate if topically applying N-benzyl-N-methyldecan-1-amine (BMDA), derived from garlic, and its derivative [decyl-(4-methoxy-benzyl)-methyl-1-amine] (DMMA) could effectively alleviate AD-like skin lesions in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Administering these compounds to the irritated skin of DNCB-treated mice significantly reduced swelling, rash, and excoriation severity, alongside a corresponding decrease in inflamed epidermis and dermis. Moreover, they inhibited spleen and lymph node enlargement and showed fewer infiltrated mast cells in the epidermis and dermis through toluidine-blue staining. Additionally, they led to a lower IgE titer in mouse sera as determined by ELISA, compared to vehicle treatment. Analyzing skin tissue from the mice revealed decreased transcript levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6), IL-4, iNOS, and COX-2, compared to control mice. Simultaneously, the compounds impeded the activation of inflammation-related signaling molecules such as JNK, p38 MAPK, and NF-κB in the mouse skin. In summary, these findings suggest that BMDA and DMMA hold the potential to be developed as a novel treatment for healing inflammatory AD.


Dermatitis, Atopic , Garlic , Maleic Anhydrides , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dinitrochlorobenzene/toxicity , Skin/pathology , Cytokines , Amines/pharmacology , NF-kappa B/pharmacology , Mice, Inbred BALB C
11.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38542227

Atopic dermatitis, or eczema, is the most common chronic skin disorder, characterized by red and pruritic lesions. Its etiology is multifaceted, involving an interplay of factors, such as the allergic immune response, skin barrier dysfunction, and dysbiosis of the skin microbiota. Recent studies have explored the role of extracellular vesicles (EVs), which are lipid bilayer-delimitated particles released by all cells, in atopic dermatitis. Examination of the available literature identified that most studies investigated EVs released by Staphylococcus aureus, which were found to impact the skin barrier and promote the release of cytokines that contribute to atopic dermatitis development. In addition, EVs released by the skin fungus, Malassezia sympodialis, were found to contain allergens, suggesting a potential contribution to allergic sensitization via the skin. The final major finding was the role of EVs released by mast cells, which were capable of activating various immune cells and attenuating the allergic response. While research in this area is still in its infancy, the studies examined in this review provide encouraging insights into how EVs released from a variety of cells play a role in both contributing to and protecting against atopic dermatitis.


Dermatitis, Atopic , Extracellular Vesicles , Hypersensitivity , Humans , Dermatitis, Atopic/pathology , Skin/pathology , Allergens , Extracellular Vesicles/pathology
12.
Front Immunol ; 15: 1324026, 2024.
Article En | MEDLINE | ID: mdl-38533495

Background: Imidazole propionate (IMP) is a histidine metabolite produced by some gut microorganisms in the human colon. Increased levels of IMP are associated with intestinal inflammation and the development and progression of cardiovascular disease and diabetes. However, the anti-inflammatory activity of IMP has not been investigated. This study aimed to elucidate the role of IMP in treating atopic dermatitis (AD). Methods: To understand how IMP mediates immunosuppression in AD, IMP was intraperitoneally injected into a Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced AD-like skin lesions mouse model. We also characterized the anti-inflammatory mechanism of IMP by inducing an AD response in keratinocytes through TNF-α/IFN-γ or IL-4 stimulation. Results: Contrary to the prevailing view that IMP is an unhealthy microbial metabolite, we found that IMP-treated AD-like skin lesions mice showed significant improvement in their clinical symptoms, including ear thickness, epidermal and dermal thickness, and IgE levels. Furthermore, IMP antagonized the expansion of myeloid (neutrophils, macrophages, eosinophils, and mast cells) and Th cells (Th1, Th2, and Th17) in mouse skin and prevented mitochondrial reactive oxygen species production by inhibiting mitochondrial energy production. Interestingly, we found that IMP inhibited AD by reducing glucose uptake in cells to suppress proinflammatory cytokines and chemokines in an AD-like in vitro model, sequentially downregulating the PI3K and mTORC2 signaling pathways centered on Akt, and upregulating DDIT4 and AMPK. Discussion: Our results suggest that IMP exerts anti-inflammatory effects through the metabolic reprogramming of skin inflammation, making it a promising therapeutic candidate for AD and related skin diseases.


Dermatitis, Atopic , Imidazoles , Humans , Animals , Mice , Dermatitis, Atopic/pathology , Skin/pathology , Reactive Oxygen Species , Immunoglobulin E/adverse effects , Anti-Inflammatory Agents/pharmacology , Inflammation/pathology
13.
Sci Rep ; 14(1): 6263, 2024 03 15.
Article En | MEDLINE | ID: mdl-38491103

Psychological stress and intestinal leakage are key factors in atopic dermatitis (AD) recurrence and exacerbation. Here, we demonstrate the mechanism underlying bacterial translocation across intestinal epithelial barrier damaged due to stress and further aggravation of trimellitic anhydride (TMA)-induced itch, which remain unclear, in AD mice. Immobilization (IMO) stress exacerbated scratching bouts and colon histological damage, and increased serum corticosterone and lipopolysaccharide (LPS). Orally administered fluorescein isothiocyanate (FITC)-dextran and surgically injected (into the colon) Cy5.5-conjugated LPS were detected in the serum and skin after IMO stress, respectively. The relative abundance of aerobic or facultative anaerobic bacteria was increased in the colon mucus layer, and Lactobacillus murinus, E. coli, Staphylococcus nepalensis, and several strains of Bacillus sp. were isolated from the spleens and mesenteric lymph nodes. Oral antibiotics or intestinal permeability blockers, such as lubiprostone (Lu), 2,4,6-triaminopyrimidine (TAP) and ML-7, inhibited IMO stress-associated itch; however, it was reinduced through intradermal or i.p. injection of LPS without IMO stress. I.p. injection of TAK-242 (resatorvid), a TLR4 inhibitor, abrogated IMO stress-associated itch, which was also confirmed in TLR4-KO mice. IMO stress alone did not cause itch in naïve mice. IMO stress-induced itch aggravation in TMA-treated AD mice might be attributed to the translocation of gut-derived bacterial cells and LPS, which activates peripheral TLR4 signaling.


Dermatitis, Atopic , Toll-Like Receptor 4 , Animals , Mice , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Disease Models, Animal , Escherichia coli , Lipopolysaccharides/metabolism , Pruritus/chemically induced , Toll-Like Receptor 4/metabolism
14.
J Allergy Clin Immunol ; 153(5): 1344-1354.e5, 2024 May.
Article En | MEDLINE | ID: mdl-38336257

BACKGROUND: Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE: We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS: Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS: Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION: Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.


Basophils , Dermatitis, Atopic , Interleukin-4 , Ovalbumin , Th2 Cells , Animals , Basophils/immunology , Mice , Interleukin-4/immunology , Interleukin-4/genetics , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Ovalbumin/immunology , Th2 Cells/immunology , Skin/immunology , Skin/pathology , Mice, Inbred C57BL , Mice, Inbred BALB C , Disease Models, Animal , Dendritic Cells/immunology , Mice, Transgenic , Mast Cells/immunology
15.
Kobe J Med Sci ; 69(4): E129-E143, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38379275

Patients with eczema with a systemic metal allergy, such as nickel (Ni), cobalt (Co), chromium (Cr), and tin (Sn), should pay attention to symptomatic exacerbation by excessive metal intake in food. However, dietary intervention for systemic metal allergy can be difficult. In this study, we evaluated the effect of dietary intervention by a registered dietitian on clinical symptoms in patients with a systemic metal allergy. Forty-four patients with cutaneous symptoms who were diagnosed with a metal allergy were randomly assigned to the dietary intervention group (DI group, n = 29) by a registered dietitian or the control group (C group, n = 15). The DI group was individually instructed by a registered dietitian how to implement a metal-restricted diet and then evaluated 1 month later. Dermatologists treated skin lesions of patients in both groups. Skin symptoms assessed by the Severity Scoring of Atopic Dermatitis (SCORAD) index, blood tests, and urinary metal excretion were evaluated. The DI group showed decreased Ni, Co, Cr, and Sn intake (all P ≤ 0.05), and an improved total SCORAD score, eczema area, erythema, edema/papulation, oozing/crust, excoriation, lichenization and dryness after 1 month of intervention compared with before the intervention (all P ≤ 0.05). However, the C group showed decreased Ni and Sn intake and an improved oozing/crust score (all P < 0.05). It showed the effective reduction of dietary metal intake controls dermatitis due to a metal allergy. In conclusion, dietary intervention by a registered dietitian is effective in improving skin symptoms with a reduction in metal intake.


Dermatitis, Atopic , Eczema , Humans , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/pathology , Dermatitis, Atopic/therapy , Diet
16.
Front Biosci (Landmark Ed) ; 29(2): 84, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38420827

Atopic dermatitis (AD) is a recurrent, chronic, inflammatory, itchy skin disorder that affects up to 20% of the pediatric population and 10% of the adult population worldwide. Onset typically occurs early in life, and although cardinal disease features are similar across all ages, different age groups and ethnicities present distinct clinical characteristics. The disease imposes a significant burden in all health-related quality of life domains, both in children and adults, and a substantial economic cost both at individual and national levels. The pathophysiology of AD includes a complex and multifaceted interplay between the impaired dysfunctional epidermal barrier, genetic predisposition, and environmental contributors, such as chemical and/or biological pollutants and allergens, in the context of dysregulated TH2 and TH17 skewed immune response. Regarding the genetic component, the loss of function mutations encoding structural proteins such as filaggrin, a fundamental epidermal protein, and the more recently identified variations in the epidermal differentiation complex are well-established determinants resulting in an impaired skin barrier in AD. More recently, epigenetic factors have facilitated AD development, including the dysbiotic skin microbiome and the effect of the external exposome, combined with dietary disorders. Notably, the interleukin (IL)-31 network, comprising several cell types, including macrophages, basophils, and the generated cytokines involved in the pathogenesis of itch in AD, has recently been explored. Unraveling the specific AD endotypes, highlighting the implicated molecular pathogenetic mechanisms of clinically relevant AD phenotypes, has emerged as a crucial step toward targeted therapies for personalized treatment in AD patients. This review aims to present state-of-the-art knowledge regarding the multifactorial and interactive pathophysiological mechanisms in AD.


Dermatitis, Atopic , Child , Adult , Humans , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Quality of Life , Skin/metabolism , Cytokines/metabolism , Genetic Predisposition to Disease
17.
Pathology ; 56(3): 300-312, 2024 Apr.
Article En | MEDLINE | ID: mdl-38307774

The nipple can be affected by many malignant and benign entities. A wide variety of diseases including Paget disease, atopic dermatitis and nipple candidiasis can cause eczema-like changes in the nipple. In cases of diagnostic uncertainty, tissue sampling may be indicated. A true eczematous lesion, such as atopic dermatitis, typically shows a spongiotic dermatitis pattern. Paget disease, on the other hand, presents with infiltration of the nipple epidermis by neoplastic cells. The presence of atypical cells scattered in the epidermis in a pagetoid pattern opens up a histopathological differential diagnosis encompassing squamous cell carcinoma in situ and malignant melanoma, among others. Immunohistochemistry is commonly used to render a diagnosis. The objective of this article is to discuss Paget disease and highlight relevant clinical and histopathological differential diagnoses.


Adenocarcinoma , Breast Neoplasms , Dermatitis, Atopic , Eczema , Skin Neoplasms , Humans , Female , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/pathology , Diagnosis, Differential , Nipples/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Eczema/diagnosis , Eczema/pathology , Adenocarcinoma/pathology , Breast Neoplasms/pathology
18.
Cells ; 13(3)2024 Jan 31.
Article En | MEDLINE | ID: mdl-38334658

Healthy human skin tissue is often used as a control for comparison to diseased skin in patients with skin pathologies, including skin cancers or other inflammatory conditions such as atopic dermatitis or psoriasis. Although non-affected skin from these patients is a more appropriate choice for comparison, there is a paucity of studies examining such tissue. This lack is exacerbated by the difficulty of processing skin tissue for experimental analysis. In addition, choosing a processing protocol for skin tissue which preserves cell viability and identity while sufficiently dissociating cells for single-cell analysis is not a trivial task. Here, we compare three digestion methods for human skin tissue, evaluating the cell yield and viability for each protocol. We find that the use of a sequential dissociation method with multiple enzymatic digestion steps produces the highest cell viability. Using single-cell sequencing, we show this method results in a relative increase in the proportion of non-antigen-presenting mast cells and CD8 T cells as well as a relative decrease in the proportion of antigen-presenting mast cells and KYNU+ CD4 T cells. Overall, our findings support the use of this sequential digestion method on freshly processed human skin samples for optimal cell yield and viability.


Dermatitis, Atopic , Skin , Humans , Skin/pathology , T-Lymphocyte Subsets/pathology , Dermatitis, Atopic/pathology , Sequence Analysis, RNA , Digestion
19.
J Dermatolog Treat ; 35(1): 2310633, 2024 Dec.
Article En | MEDLINE | ID: mdl-38297490

Purpose: Ruxolitinib (selective Janus kinase [JAK] 1 and JAK2 inhibitor) cream demonstrated efficacy and safety in patients with atopic dermatitis (AD) in the phase 3 TRuE-AD studies. In TRuE-AD1/TRuE-AD2 (NCT03745638/NCT03745651), adults and adolescents with mild to moderate AD were randomized to apply twice-daily ruxolitinib cream or vehicle for eight weeks. Here, we evaluated the efficacy and tolerability of ruxolitinib cream by anatomic region, focusing on head/neck (HN) lesions that are typically difficult to manage and disproportionately affect quality of life (QoL).Materials and methods: Eczema Area and Severity Index (EASI) responses in anatomic regions were evaluated in the pooled population (N = 1208) and among patients with baseline HN involvement (n = 663). Itch, Investigator's Global Assessment (IGA), QoL, and application site tolerability were also assessed.Results: By Week 2 (earliest assessment), ruxolitinib cream application resulted in significant improvements across all EASI anatomic region subscores and AD signs versus vehicle, with further improvements through Week 8. Significantly more patients with HN involvement who applied ruxolitinib cream versus vehicle achieved clinically meaningful improvements in itch, IGA, and QoL. Application site reactions with ruxolitinib cream were infrequent (<3%), including in patients with HN involvement.Conclusions: These results support the use of ruxolitinib cream for AD treatment across all anatomic regions, including HN.


Dermatitis, Atopic , Nitriles , Pyrazoles , Pyrimidines , Adolescent , Adult , Humans , Dermatitis, Atopic/pathology , Double-Blind Method , Emollients , Immunoglobulin A , Pruritus/drug therapy , Pruritus/etiology , Quality of Life , Severity of Illness Index , Treatment Outcome , Clinical Trials, Phase III as Topic , Randomized Controlled Trials as Topic
20.
Cutan Ocul Toxicol ; 43(1): 97-103, 2024 Mar.
Article En | MEDLINE | ID: mdl-38258428

OBJECTIVES: Atopic dermatitis (AD) can be classified into intrinsic AD(IAD) and extrinsic AD(EAD). However, the differences in clinical features and pathogenesis between these two subtypes of AD are currently unclear. This study aimed to analyse the differences in clinical features and peripheral blood biomarkers between Chinese patients with severe IAD and EAD in order to elucidate the physiopathogenesis of AD. MATERIALS AND METHODS: A total of 316 hospitalised patients definitively diagnosed with severe AD were included in this study. There were 72 cases of severe IAD and 244 cases of severe EAD. The clinical features of the patients were recorded in details. Serum total IgE, IgA, IgG, IgM, complementC3/C4, peripheral blood cell counts, lactate dehydrogenase (LDH), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), IL-2R, IL-6, IL-8, and TNF-α in AD patients and 60 age-matched healthy controls were analysed. IAD and EAD had similar severity/Scoring Atopic Dermatitis (SCORAD) scores. RESULTS: Compared with healthy controls, IAD patients had significantly higher total IgE, eosinophils, monocytes, LDH, CRP, IL-2R, IL-6, IL-8 and TNF-α, and lower IgM and C4. EAD patients had significantly higher total IgE, IgA, eosinophils, white blood cell (WBC) counts, neutrophils, monocytes, basophils, LDH, CRP, IL-2R, IL-6, IL-8, TNF-α and lower IgM than healthy controls. IAD patients had a higher percentage of rural/urban living and female/male, a shorter course of disease and lower total IgE, eosinophils, WBC counts, neutrophils, monocytes, basophils, LDH, IgG and C4 than EAD patients. SCORAD scores, eosinophils, LDH expression levels increased with total IgE uniquely in patients with EAD. CONCLUSIONS: IAD and EAD exhibit specific clinical features and molecular changes. IAD has a more complex physiopathogenesis, and deserves further investigation.


Dermatitis, Atopic , Humans , Male , Female , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Tumor Necrosis Factor-alpha , Interleukin-6 , Interleukin-8 , Immunoglobulin E , Biomarkers , C-Reactive Protein , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M
...